EQUAÇÕES 1º e 2º GRAUS.
Lista de questões resolvidas do ENEM sobre Equações 1º e 2º Graus.
(ENEM 2009) Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais. Verificou-se ao final que, para arcar com todas as despesas, faltavam R$ 510,00, e que 5 novas pessoas haviam ingressado no grupo. No acerto foi decidido que a despesa total seria dividida em partes iguais pelas 55 pessoas. Quem não havia ainda contribuído pagaria a sua parte, e cada uma das 50 pessoas do grupo inicial deveria contribuir com mais R$ 7,00.
De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
a) R$ 14,00.
b) R$ 17,00.
c) R$ 22,00.
d) R$ 32,00.
e) R$ 57,00.
Resolução:
De acordo com o enunciado da questão, 50 pessoas já haviam pagado sua parte da despesa total, por isso não consideraremos o valor total para elas, apenas o valor de R$ 7,00 adicional, que deverá ser multiplicado por 50 pessoas. Além desse pessoal, outros cinco juntaram-se ao grupo e precisam pagar sua parte, um valor que não conhecemos e, portanto, podemos identificar como x. Somando-se o valor que essas pessoas pagarão ao valor acrescentado ao restante do grupo, teremos um recolhimento de R$ 510,00. Podemos então montar uma equação do 1° grau:
(50 · 7) + (5 · x) = 510
350 + 5x = 510
5x = 510 – 350
5x = 160
x = 32
Portanto, cada um pagou o valor total de R$ 32,00. Logo, a alternativa correta é a letra d.
(ENEM 2010) O Salto Triplo é uma modalidade do atletismo em que o atleta dá um salto em um só pé, uma passada e um salto, nessa ordem. Sendo que o salto com impulsão em um só pé será feito de modo que o atleta caia primeiro sobre o mesmo pé que deu a impulsão; na passada ele cairá com o outro pé, do qual o salto é realizado.
Disponível em: www.cbat.org.br (adaptado).
Um atleta da modalidade Salto Triplo, depois de estudar seus movimentos, percebeu que, do segundo para o primeiro salto, o alcance diminuía em 1,2 m, e, do terceiro para o segundo salto, o alcance diminuía 1,5 m. Querendo atingir a meta de 17,4 m nessa prova e considerando os seus estudos, a distância alcançada no primeiro salto teria de estar entre
a) 4,0 m e 5,0 m.
b) 5,0 m e 6,0 m.
c) 6,0 m e 7,0 m.
d) 7,0 m e 8,0 m.
e) 8,0 m e 9,0 m.
Resolução:
Podemos interpretar o enunciado da questão como:
- No primeiro salto, ele atinge uma distância desconhecida, que pode ser chamada de x m;
- No segundo salto, a distância diminui 1,2 m em relação ao primeiro salto, logo a distância é de(x – 1,2) m;
- No terceiro salto, a distância reduz ainda 1,5 m em relação ao anterior, portanto a distância é(x – 1,2 – 1,5) m, que equivale a (x – 2,7) m.
Se o atleta pretende alcançar a distância total de 17,4 m, somando as distâncias em cada salto, teremos a seguinte equação do 1° grau:
x + (x – 1,2) + (x – 2,7) = 17,4
x + x – 1,2 + x – 2,7 = 17,4
3x – 3,9 = 17,4
3x = 17,4 + 3,9
3x = 21,3
x = 21,3
3
x = 7,1
Portanto, o valor de alcance do primeiro salto é 7,1 m. Esse valor está entre 7,0 m e 8,0 m, sendo assim, a alternativa correta é a letra d.
(ENEM 2010) Uma escola recebeu do governo uma verba de R$ 1000,00 para enviar dois tipos de folhetos pelo correio. O diretor da escola pesquisou que tipos de selos deveriam ser utilizados. Concluiu que, para o primeiro tipo de folheto, bastava um selo de R$ 0,65 enquanto para folhetos do segundo tipo seriam necessários três selos, um de R$ 0,65, um de R$ 0,60 e um de R$ 0,20. O diretor solicitou que se comprassem selos de modo que fossem postados exatamente 500 folhetos do segundo tipo e uma quantidade restante de selos que permitisse o envio do máximo possível de folhetos do primeiro tipo.
Quantos selos de R$ 0,65 foram comprados?
a) 476
b) 675
c) 923
d) 965
e) 1 538
Resolução:
Para que fossem enviados 500 selos do segundo tipo, mais x selos do primeiro tipo, totalizando um valor igual ou inferior a R$ 1000,00, tem-se:
x.(0,65)+500(0,65+060+0,20) ≤ 1000.
x≤423,07. Logo, x=423 selos primeiro tipo.
Assim, o total de selos de R$ 0,65 que foram comprados é de 923.
c) 923
(ENEM 2010) O Salto Triplo é uma modalidade do atletismo em que o atleta dá um salto em um só pé, uma passada e um salto, nessa ordem. Sendo que o salto com impulsão em um só pé será feito de modo que o atleta caia primeiro sobre o mesmo pé que deu a impulsão; na passada ele cairá com o outro pé, do qual o salto é realizado.
Um atleta da modalidade Salto Triplo, depois de estudar seus movimentos, percebeu que, do segundo para o primeiro salto, o alcance diminuía em 1,2 m, e, do terceiro para o segundo salto, o alcance diminuía 1,5 m. Querendo atingir a meta de 17,4 m nessa prova e considerando os seus estudos, a distância alcançada no primeiro salto teria de estar entre:
a) 4,0 m e 5,0 m.
b) 5,0 m e 6,0 m.
c) 6,0 m e 7,0 m.
d) 7,0 m e 8,0 m.
e) 8,0 m e 9,0 m.
Resolução:
Sendo x o valor do primeiro salto, (x - 1,2) será o valor do segundo salto e (x – 2,7) o valor do terceiro salto, logo para que o atleta alcance a meta de 17,4m no salto triplo
x + (x- 1,2)+(x - 2,7) terá que ser igual a 17,4, tem-se:
x + (x- 1,2)+(x - 2,7) = 17,4 , x=7,1m.
Logo, considerando os seus estudos, terá que alcançar 7,1m no primeiro salto para atingir a meta de 17,4 m.
d) 7,0 m e 8,0 m.
(ENEM 2009) Um grupo de 50 pessoas fez um orçamento inicial para organizar uma festa, que seria dividido entre elas em cotas iguais. Verificou-se ao final que, para arcar com todas as despesas, faltavam R$ 510,00, e que 5 novas pessoas haviam ingressado no grupo. No acerto foi decidido que a despesa total seria dividida em partes iguais pelas 55 pessoas. Quem não havia ainda contribuído pagaria a sua parte, e cada uma das 50 pessoas do grupo inicial deveria contribuir com mais R$ 7,00.
De acordo com essas informações, qual foi o valor da cota calculada no acerto final para cada uma das 55 pessoas?
a) R$ 14,00.
b) R$ 17,00.
c) R$ 22,00.
d) R$ 32,00.
e) R$ 57,00.
Resolução:
A despesa pode ser escrita de duas formas de acordo com o valor x que será pago por cada uma das 55 pessoas no acerto final. Nesse acerto, a despesa (D) pode ser escrita por D = 55x. No acerto inicial, cada uma das 50 pessoas estava pagando (x - 7) reais e estava faltando 510 reais para completar o valor da despesa, assim D = 50 (x - 7) + 510. Igualando-se às duas equações e realizando a distributiva, tem-se que: 50x – 350 + 510 = 55x.
Logo 5x = 160, x = 32 reais.
d)R$ 32,00.
(ENEM 2004) Em quase todo o Brasil existem restaurantes em que o cliente, após se servir, pesa o prato de comida e paga o valor correspondente, registrado na nota pela balança. Em um restaurante desse tipo, o preço do quilo era R$12,80. Certa vez a funcionária digitou por engano na balança eletrônica o valor R$18,20 e só percebeu o erro algum tempo depois, quando vários clientes já estavam almoçando. Ela fez alguns cálculos e verificou que o erro seria corrigido se o valor incorreto indicado na nota dos clientes fosse multiplicado por:
a) 0,54
b) 0,65
c) 0,70
d) 1,28
e) 1,42
Resolução:
Montando a equação temos
18,20 x = 12,80
x = 0.70
x = 0.70
Logo x=0,70
c) 0,70
c) 0,70
Nenhum comentário:
Postar um comentário